T24-TA
Temperature Acquisition Module (Pt100)

User Manual
mantracourt.com
Introduction / Overview ... 2
Connections .. 2
Power ... 2
Input Connections .. 2
 2 Wire .. 3
 3 Wire .. 3
 4 Wire .. 3
Shield Connections ... 3
Configuration ... 4
Installation .. 4
 T24 Toolkit .. 4
 T24-BSu Base Station .. 4
 T24 Toolkit .. 5
 General Pages ... 5
 Setup Base Station Communications 5
Home .. 6
Analyser .. 7
Data Provider Monitor ... 8
Information .. 9
Battery and Radio Levels .. 10
Battery and Radio Levels Advanced Settings 11
Data Rates and Quality ... 12
Calibration .. 14
Channel and Encryption .. 15
Save and Restore ... 16
Advanced Settings ... 17
Installation .. 18
Overview .. 18
Power Supply / Battery ... 19
 Considerations When Selecting Batteries 19
 Battery Types ... 20
Power Supply Modules .. 20
 Lithium Ion /Polymer Module T24-BC1 20
 Physical Connections ... 21
 Specification .. 21
 Suitable Batteries ... 21
 Capacitor Module T24-BC2 .. 22
Mounting ... 23
Antenna ... 24
 Internal Chip Antenna ... 24
 External Antenna Option .. 24
 External Antennas ... 25
 Antenna Orientation ... 25
Specifications .. 26
General Radio ... 26
T24-TA ... 26
Approvals .. 27
 CE ... 27
 FCC ... 27
 Industry Canada .. 28
OEM / Reseller Marking and Documentation Requirements 28
 FCC ... 28
 IC ... 28
 CE ... 28
Declaration Of Conformity .. 30
Worldwide Regional Approvals ... 31
 Important Note .. 31
Warranty .. 31

1 Mantracourt Electronics Limited T24-TA User Manual
Introduction / Overview

The remote acquisition module requires an external platinum temperature sensor (Pt100). The module measures the temperature and periodically transmits it. Between transmissions the device is optionally in a power saving sleep mode to conserve batteries.

Various devices are available that utilise the transmitted data and include handheld displays etc.

Connections

This section will show you how to get the device pair working out of the box. You will require a 3 Volt dc supply for the acquisition module which may be 2 X AA alkaline batteries.

Power

Attach power supply wiring to the module as shown below:

![Power Connection Diagram]

Connect to a 3 Volt power supply or batteries.

WARNING: This module is not reverse polarity protected!

WARNING: The maximum voltage is 3.6V!

Input Connections

NOTE: The acquisition module may already be mounted in a connectivity module. In this case please refer to the connectivity module user manual for the connection details.

![Input Connection Diagram]
The Pt100 probe can be connected in 2, 3 or 4 wire measurement configurations.

2 Wire

The simplest resistance thermometer configuration uses two wires. It is only used when high accuracy is not required, as the resistance of the connecting wires is added to that of the sensor, leading to errors of measurement. This configuration allows use of 100 meters of cable.

3 Wire

In order to minimize the effects of the lead resistances, a three-wire configuration can be used. Using this method the two leads to the sensor are on adjoining arms. There is a lead resistance in each arm of the bridge so that the resistance is cancelled out, so long as the two lead resistances are accurately the same. This configuration allows up to 600 meters of cable.

4 Wire

The four-wire resistance thermometer configuration increases the accuracy and reliability of the resistance being measured: the resistance error due to lead wire resistance is zero. In the diagram above a standard two-terminal RTD is used with another pair of wires to form an additional loop that cancels out the lead resistance. It provides full cancellation of spurious effects; cable resistance of up to 15 Ohms can be handled.

Shield Connections

We recommend the following rules to determine whether there should be a connection between the acquisition module shield and the sensor chassis or cable:

1. If the sensor is remote to the acquisition module and the screen of the signal cable is NOT connected to the sensor chassis then the cable screen should be connected to the acquisition module shield connection.

2. If the sensor is remote to the acquisition module and the screen of the signal cable IS connected to the sensor chassis then the cable screen should be NOT connected to the acquisition module shield connection.

3. If the acquisition module is integral to the sensor or mounted very close and the module is mounted on a metal chassis then the answer to whether the acquisition module shield connection should be connected to the metal chassis is a matter of experimentation. This connection must be as short as possible. The T24 Toolkit can be used to chart the signal levels and tests should be undertaken to determine whether there is a better radio signal with or without the shield/chassis connection. The quality of the measured reading should also be looked at. In cases where the shield/chassis connection makes no difference to the radio signal or the reading quality then the connection should be made.
Configuration

This section explains how to install software and configure the module. Please note that you will need the T24 Toolkit software and a T24-BS base station to allow your computer to communicate with T24 telemetry devices.

Installation

T24 Toolkit

To configure the devices we must use the T24 Toolkit software application. This can be downloaded from our web site or may be shipped with your products. Install this on a PC or laptop. Run setup.exe and follow the prompts to install the software.

T24-BSu Base Station

If you have a USB version of the base station (T24-BSu) then you just need to plug this into a USB socket on your PC. If you are using an alternative base station then please refer to the appropriate manual.
T24 Toolkit

The T24 Toolkit provides a means of simple configuration and calibration of the acquisition module along with useful tools to aid integration.

Run the T24 Toolkit software application.

PLEASE NOTE: Depending on which acquisition module is selected the screenshots may vary slightly. This will generally be in naming of units and device descriptions. The screenshots shown are those shown when a T24-SA strain gauge acquisition module is connected.

General Pages

Setup Base Station Communications

Select **USB** as the interface and select **1** as the Base Station Address.

In the toolkit all items that can be changed by the user are coloured orange.

To change a value just click on the relevant orange item. You will then be presented with a new dialog window allowing you to change the value.

This may use a slider, text box or list to allow your new value to be entered.

Click the Home button to attempt communications with the base station.

If no communications can be established the toolkit will remain on this page. You will need to check that the base station is powered and that it is connected to the converter correctly.
We now have successful communications with the base station so we can now pair with our device or we can select the Spectrum Analyser mode or Data Provider Monitor mode.

To connect to our device we will pair. This is achieved by power cycling the device. Pairing removes the need to know the radio settings of the device you are connecting to and also ensures that it is in a suitable state for configuration.

Pairing Procedure
- Remove power from the acquisition module.
- Click the Pair button on the toolkit.
- You now have 10 seconds to re-apply power to the acquisition module.

If you connect successfully the toolkit will change to the Information page. If the pairing fails try again.

NOTE: Pairing with the toolkit will not change the radio configuration settings of the connected device.
The analyser page is provided as a tool and will not normally be needed unless you plan to change channels and want to find the best channel to select, or to diagnose poor communications issues.

This page shows the radio signal levels detected across all the channels available to the T24 series of devices. Using this tool may help in detecting noisy areas and allow you to decide on which channels you may want to use.

The above charts show the traffic from a Wi-Fi network and it can be seen to be operating over channels 6 to 9 and it would be best (though not essential) to avoid using these channels.
Data Provider Monitor

T24 Acquisition Devices normally operate in low power mode and periodically transmit Data Provider packets.

This page shows all detected Data Provider packets which may be useful for checking that a device is operational.

NOTE: When the toolkit connects to a device to enable configuration it will usually inhibit the transmission of Data Provider packets.

The Start Logging button will ask for a filename and proceed to log the received data to a CSV file in the following format:

- **Data Tag, Elapsed mS, Value**

The View Last Log button will launch the application associated with CSV files and open the last logged file.
Information

Once successfully paired to a device this page is displayed. This page shows you information about the connected device.

Items you can change:

Name: You can enter a short description which may help you recognise this device in the future.
Battery and Radio Levels

Here you can see the voltage of the battery and the radio signal levels at the base station and the remote acquisition module. This simple view gives an LQI value which stands for Link Quality Indicator. This value will range from 0 to 100 and within this band you should still achieve communications. As the level drops towards zero communications may become intermittent but still achievable.

You can set the level at which the acquisition module reports a low battery. If the battery voltage is below the Low Battery Level the bar will be coloured orange.

Items you can change:
- **Low Battery Level**
 - Click this item to set the battery low level.

Clicking the Advanced button will give more detailed information on the RSSI and CV levels of the received radio packets.
Battery and Radio Levels Advanced Settings

LQI value which stands for Link Quality Indicator. This value will range from 0 to 100 and within this band you should still achieve communications. As the level drops towards zero communications may become intermittent but still achievable.

RSSI is effectively the received dB level which will range from about -30 which is a good signal to -90 which is a weak signal.

CV is the correlation value and indicates how well the signal can be decoded. This ranges from 55 which is a poor quality signal and 110 which is an excellent signal.
Data Rates and Quality

This page allows you to select the rate at which data is transmitted from the acquisition module and the quality. By selecting low power mode and entering some other information the toolkit will also give guides on achievable battery life.

Note that the battery life calculator is assuming the best case scenario which is at 20°C and that the battery has a suitable low internal resistance or that a suitable capacitor is fitted across the battery. See battery details in the Installation section.

Items you can change:

Transmit Interval
Enter the transmission rate in milliseconds. The default is 300 giving approximately 3 per second which is ideally suited to reading on a handheld. You may want to slow this down to achieve longer battery life.

NOTE: The toolkit allows you to enter a Transmit Interval as low as 5mS for a 200Hz transmission rate. Rates above 100Hz are not guaranteed to be achievable by the T24-TA module.

Sample Time
This is the length of time in milliseconds that the input is sampled before the value is transmitted. This can vary between 5 milliseconds and close to the Transmit Interval. A shorter sample time means that the device is awake for less time so battery life is increased but at the expense of a reading with less noise free resolution. You can vary this to see the effect on battery life and noise free resolution.

Low Power Mode
Unless the acquisition module is non battery powered this should be set to Yes. In between transmissions the acquisition module will enter sleep mode which, for some modules such as the strain gauge acquisition module, will
have a massive effect on battery life.
A Reason for not using Low Power Mode would be if using the device in a Master-Slave arrangement with PC for example.

Battery Type
This is not a parameter of the device but information used by the battery life guide. You can choose from some preset batteries or choose custom to allow you to select your own battery capacity. See below. This will also offer to change the Battery Low Level if the level suitable for the chosen battery is not the level currently set.

Usable Capacity
This is not a parameter of the device but information used by the battery life guide. This is the capacity of the battery in Amp Hours and has a profound effect on battery life calculations. This capacity needs to be calculated from battery manufacturer’s data sheets to take into account that we can only use batteries down to 2.1 Volts so in the case of twin AA cells this would be 1.05 Volts.
Generally the usable capacity will not be as high as that advertised by the battery manufacturer. Temperature and internal resistance of the battery are not taken into account in the guide.

Usage Per 24 Hour Period
Enter the number of hours per 24 hour period that the T24-HS handheld will be turned on and communicating with an acquisition module.
This module does not provide calibration, as such, because it is factory calibrated. However, on this page you can select the units and set an offset if required.

The bottom of the page shows the Input resistance and the Temperature Output.

Items you can change:

Select Units
- Simply select the required temperature units from the drop down list. If you change units you will have to adjust any entered offsets below.

Offset
- This allows you to compensate for resistances in the sensor cable or to just generally apply an offset to the output. The value you enter here will be subtracted from the measured temperature to create the transmitted temperature. The offset is entered in the same engineering units as selected above.
Channel and Encryption

Here you can change the channel and encryption key for the acquisition module device.

If you want to change the channel of an acquisition module and T24-HS pair there is no need to change both devices.

Simply pair to the T24-HS handheld and change its channel and key.

Now perform pairing to the acquisition module from the handheld and the acquisition module will be configured to match the handheld.

NOTE: Early acquisition module do not yet utilise the encryption keys so these should be left at all zeros.

Items you can change:

Channel
Select a channel between 1 and 16. The default is channel 1. You can use the Spectrum Analyser mode to determine a good clean channel to use.
NOTE: Channel 16 is used to negotiate pairing so avoid this channel if possible.

Encryption Key
Only devices with identical encryption keys can communicate. You can isolate groups of devices on the same channel or just use the key to ensure the data cannot be read by somebody else.
Save and Restore

Here you can save the device settings to a file on your PC so that they can be later loaded back into the same or different device.

Items you can change:

Save

Click this button to open a file dialog window to allow you to select a filename and location to save the configuration file to. All configuration information including calibration data will be saved to the file. The file extension is `.tcf`.

Restore

Click this button to open a file dialog window to allow you to select a filename and location of a previously saved file to load into the connected device. All configuration information including calibration data will be overwritten. The file extension is `.tcf`.

Advanced Settings

Click this button to enter the Advanced Settings Page. Here are settings which do not normally require changing.
Advanced Settings

Items you can change:

Sleep Delay
Here you can enter a delay in seconds after which the acquisition module will return to deep sleep if no Keep Awake message is heard from the T24-HS handheld. The default is 60 seconds.

Data Tag
The data transmitted by the acquisition module is marked with a Data Tag which is a 2 byte hexadecimal code. By default this is set to the last 2 bytes of the device ID (or to put it another way, the last 4 characters of the device ID). If by some chance you had two acquisition module devices that would be working on the same channel and had the same last 4 characters in their ID (1 in 65,535 chances) you may want to change the data Tag of one of the devices and perform pairing again with the T24-HS handheld.

Startup Time
Not applicable to this module.

LED Mirror to Digital Output
When set to Yes each time the LED is active the digital output is active. This can be useful if the module is to be encapsulated or enclosed and enables a second LED to be externally mounted. This is very useful when using a T24-HR roaming handheld as the acquisition module LED will activate while the handheld is in communications with the module.

Transmit power
Set the transmit power level from 0 - 100%. Default is 100%
Installation

Overview
Radio performance at microwave wavelengths is very dependent upon the operating environment; any structure within the operating region of the radios will give rise to three effects:

Obscuration. Obscuration will result in reduced range and occurs when an obstruction masks the line-of-sight between radios.

Aberrations to the horizontal and vertical space patterns. Distortion of these patterns may occur if structures or objects are placed in the near or intermediate field of the antenna. The effect will be to distort the coverage patterns, adversely affecting range and link quality.

Reflection. Any object placed in line-of-sight of the transmit antenna will result in signals arriving at the receiver by an indirect path. Degradation of performance due to reflection (multipath effects) appears as reduced range or poor link quality.

Any of the above will cause poor RSSI figures, an increase in the packet loss rate and in extreme cases complete loss of signal. Fortunately, if consideration is given to these effects at the integration stage then a good quality link will be obtained.

Guidelines for product design:
When selecting materials for product enclosures, preference should be given to fibreglass, light coloured ABS or Polypropylene; at the wavelength of 2.4GHz radio other materials will adversely affect the signal by attenuation, refraction or change in polarisation.

If the application demands that the radio is fitted inside a metal enclosure then ensure that the specified clearances are maintained around the antenna and design in a fibreglass RF window at least as large as the clearance dimensions but ideally as large as possible.

RAD24i radios fitted inside a product should be oriented so that the chip antenna will be vertical when the product is in its normal operating position.

Guidelines for installation:
When planning installations ensure that line-of-sight between nodes is maintained and that objects or structures are kept at least one metre away from antennae wherever possible.

To avoid poor link quality between a RAD24i radio and a handheld device ensure that the RAD24i is mounted so that the chip antenna is vertical. Improvement may also be obtained by altering the height above ground of the RAD24i; a small increase or reduction in antenna elevation will often improve reception.

Range underwater is only a decimetre or so depending on packet rate. Best performance underwater is obtained by using low packet rates and immersing water-proofed antennae rather than water-tight enclosures containing the antennae.
Power Supply / Battery

The acquisition module operates from 2.1 to 3.6 Volts dc so can be supplied from a variety of cells.

WARNING: It is important to note that the acquisition module is NOT reverse polarity protected!

WARNING: The maximum voltage is 3.6V!

Considerations When Selecting Batteries

Re-chargeable or replacement

This really depends on the application. Some applications where expected battery life with alkaline batteries will be many years would probably not warrant the use of re-chargeable batteries. Re-chargeable batteries have implementation issues such as how to connect to the charger, how to seal this connection if required, can the batteries be re-charged at a convenient point in the operation of the device I.E between shifts and does the voltage, when charging, exceed the maximum supply voltage of the acquisition module if so the inline charging module will need to be fitted.

Required battery life

Driven by the application and mainly dependent on measurement rate and sample time. The operation would normally require that the acquisition module is used in Low Power Mode to maximise battery life.

Size of

Choosing a battery will be influenced by how much space is available and what battery life is required, generally the bigger the battery the longer it will last.

Operating temperature range

A battery’s useable capacity is influenced by its operating temperature. Generally, the lower the temperature the lower their ability to provide charge. Beware of the batteries specified operating range when considering a particular battery technology.

Self discharge.

Batteries are chemical devices and have a shelf life which needs to be considered in application where long battery life is required. Typically an Alkaline has a battery life of 5 years.

Internal Resistance of battery

Low internal resistance is important, the higher the resistance the less useful life of the battery is available. This is due to voltage drops caused during the high current phase of the measurement cycle. (In the case of a T24-SA strain gauge input module 300mA required for 250μS). Batteries with an internal resistance of less than 150mOhm will not require the additional inline capacitor module.

Connections to battery

For the same reasons internal resistance must be low it is important to keep any voltage drops from the battery to the acquisition module as low as possible too. Care must be taken in selecting the connection method between batteries and acquisition module. For example cables should be kept as short and thick as possible.

Environmental

Other considerations when selecting a connection method to the Batteries is the effect of vibration. A standard battery holder is a poor choice in applications when the device can be subject to vibration. This is due to the interruption of supply from the battery to the acquisition module caused when the spring arrangement holding the battery to the terminal of the holder is defeated. Corrosion of terminals must also be considered as this will also introduce resistance into the supply connections. This could be overcome by ensuring the enclosure is sealed.

Optimising battery life

Battery life can be optimised by considering the following.

- Use of low power mode.
- Transmission interval.
- Required Measurement resolution (Sample time).
- Sleep / Wake configuration
- Auto-Sleep duration.
Battery Types

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline Zn-MnO₂</td>
<td>Pairs of alkaline 1.5V cells are the most common. Use D cells for maximum life and AA cells where space is restricted. Example: Varta 4014 (D), Varta 4006 (AA) Recommend T24-BC2 module to maximise usable capacity.</td>
</tr>
<tr>
<td>Nickel Metal Hydride NiMh</td>
<td>Most cells are 1.2V so two in series gives 2.4 Volts. These can match alkaline batteries in capacity but as the charged voltage is lower they do not match the usable capacity. These batteries self discharge at a faster rate than alkalines. If charging these cells in circuit precautions must be taken to ensure that the maximum voltage on the acquisition module is not exceeded. Example: GP 270AAHC (AA) Recommend T24-BC2 module to maximise usable capacity.</td>
</tr>
<tr>
<td>Nickel Cadmium NiCad</td>
<td>Most cells are 1.2V so two in series gives 2.4 Volts. Three in series can be used to give 3.6 Volts. These do not have the usable capacity of an alkaline battery. These are generally only useful if they are to be charged on a regular basis. If charging these cells in circuit precautions must be taken to ensure that the maximum voltage on the acquisition module is not exceeded. Example: Recommend T24-BC2 module to maximise usable capacity.</td>
</tr>
<tr>
<td>Lithium Primary 3.6V Li-SOCl₂</td>
<td>Lithium cells can be used but note that the maximum voltage is 3.6 Volts. Select a cell with low internal resistance. Example: Saft LS17500 (A), Saft LSH20 (D) Recommend T24-BC1 module as these cells usually have a high internal resistance.</td>
</tr>
<tr>
<td>Lithium Iron Disulphide Li-FeS₂</td>
<td>These can be found at 1.5 Volts and can therefore be a direct replacement for Alkaline cells. The low internal resistance and high capacity make these batteries an ideal choice. Example: Energizer L91</td>
</tr>
<tr>
<td>Lithium Ion and Lithium Polymer LiON, LiPo</td>
<td>These generally start at 3.7V and exceed the maximum allowable voltage. These are usable if a regulator and charging circuit can be installed between the acquisition module and the battery. Care must be taken here that the regulator does not draw too much current when idle so that the low power modes are not compromised. Recommend T24-BC1 module.</td>
</tr>
</tbody>
</table>

Power Supply Modules

Lithium Ion /Polymer Module T24-BC1

The T24-BC1 is a battery charger and power supply suitable for the T24 range of 3V acquisition modules. The T24 Battery Charger is designed to supply a constant 3.3V from a Li-ion Battery while also charging the battery from an input voltage. The unit comes pre-configured to provide a charging current of 466mA suitable for VARTA LIP653450. This module also supports additional batteries providing a charge current of 133mA via the removal of the leaded resistor (non surface mount).
Physical Connections

<table>
<thead>
<tr>
<th>Charging Current</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor Fitted</td>
<td></td>
<td>466</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Resistor Removed</td>
<td></td>
<td>133</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

LED lights when supply voltage applied

Specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>4.1</td>
<td>5</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Regulated Voltage Output</td>
<td>3.3</td>
<td></td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Battery positive connection</td>
<td>3.7</td>
<td></td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Cable Length</td>
<td></td>
<td>150</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>1.7</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

* 07/02 gauge wire attached to maximum load i.e. T24-SA with four 350 Ohm strain gauges

Note LED will only be lit when an input voltage is applied

Suitable Batteries

VARTA LIP653450
- Rated Capacity: 1100mAh
- Dimensions: 35 x 54 x 7 (mm)
- Weight: 20g
- Charge Time: 3 Hours @ 466mA
- Battery life = 1 month 25 days*

VARTA LIC18650
- Rated Capacity: 2200mAh
- Dimensions: 18.25 Diameter 65mm Height
- Weight: 46g
- Charge Time: 4.5 Hours @ 466mA
- Battery life = 3 months 20 days*

UBC 581730
- Rated Capacity: 250mAh
- Dimensions: 18 x 31.5 x 5.8 (mm)
- Weight: 6.5g
- Charge Time: 2 Hours @ 133mA
- Battery life = 12 days *

* Note: Battery life is calculated with a T24-SA running in low power mode with a sample time of 5mS and transmit interval of 333mS for 2 hours out of every 8 hours, to a 1kΩ bridge.
Capacitor Module T24-BC2

This is used for batteries which have an internal resistance of greater than 150mOhms overcoming voltage drops during high current phases of the low power mode cycle. This problem becomes apparent when attempting to communicate with high peak current acquisition modules such as a T24-SA using the T24 Toolkit or power cycling when the battery is near the end of its life. In normal operation (Low power mode) with a handheld T24-HS where the T24-SA is connected to an uninterrupted battery this module is generally not required. Using lower impedance strain gauges (or multiple parallel strain gauges) exacerbates this problem. Consult Sales for details. Alternatively fit an electrolytic capacitor across battery of 2000µF or greater. This capacitor should be of low ESR (< 70mOhms).
Mounting

Mechanical size

![Mechanical size diagram]

There are two holes available for mounting. The one nearest the connection pads can accept an M2 screw or American equivalent #0-80. Important Note: DO NOT USE #2 screw size. Note that the mounting hole is connected directly to the Battery ground of the acquisition module.

The mounting hole near the chip antenna cannot accept metal mounting hardware.

The connection holes are on a 1.9mm pitch and are a diameter of 1mm.
Antenna

Internal Chip Antenna
There must be no metal objects within 7mm of the antennas long edge and 20mm from the short edges. See diagram below.

External Antenna Option
Use of a T24 external antenna requires a T24 acquisition module with a UFL connector stud in place of the on-pcb antenna.

T24 acquisition modules fitted with a UFL stud have a suffix ‘e’ to the part number e.g. T24-SAe

Note: The suffix ‘e’ is omitted where the T24 acquisition module is fitted inside a T24-ACM or T24-ACMi enclosure e.g. T24-ACM-SA, T24-ACMi SA
External Antennas
The external antennas come in two styles. The flat PCB antenna can be mounted inside a plastic housing or to the outside of a metal housing. The PCB requires 3mm Clearance on all edges, this also applies to the RF window.

The bulkhead mounting antenna can be used with metal or plastic housings. Care must be taken when mounting the Antenna to ensure the installation does not become directional.

Antenna Orientation
For the maximum range the acquisition module and any other modules should be orientated as shown. The sensitivity to the radio transmission will be reduced if the acquisition module is oriented in a vertical or portrait position if a handheld is used because the handheld can only be used in one orientation.
Specifications

General Radio

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licence</td>
<td>Licence Exempt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation method</td>
<td>MS (QPSK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio type</td>
<td>Transceiver (2 way)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data rate</td>
<td>250</td>
<td></td>
<td>2.4835</td>
<td>kHz</td>
</tr>
<tr>
<td>Radio Frequency</td>
<td>2.4000</td>
<td></td>
<td>2.4835</td>
<td>GHz</td>
</tr>
<tr>
<td>Power</td>
<td>1</td>
<td></td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Range RAD24i (Integrated antenna)</td>
<td>100 (325)</td>
<td></td>
<td>Metres (feet) *</td>
<td></td>
</tr>
<tr>
<td>Range RAD24e (External antenna)</td>
<td>200 (650)</td>
<td></td>
<td>Metres (feet) *</td>
<td></td>
</tr>
<tr>
<td>Channels (DSSS)</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Maximum range achieved in open field site at a height of 3 metres above ground.

T24-TA

Specification at 3V supply at 25°C

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>-200</td>
<td></td>
<td>500</td>
<td>°C</td>
</tr>
<tr>
<td>Accuracy (-20 to +40 °C)</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Accuracy (-40 to +85 °C)</td>
<td>0.2</td>
<td>0.35</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Internal Resolution</td>
<td>16,000,000/ 24</td>
<td></td>
<td>Resolution/Bits</td>
<td></td>
</tr>
<tr>
<td>Noise Free where Sample Time < 5mS</td>
<td>13,000 / 13.5</td>
<td></td>
<td>Resolution/Bits</td>
<td></td>
</tr>
<tr>
<td>Noise Free where Sample Time < 10mS</td>
<td>17,000 / 14</td>
<td></td>
<td>Resolution/Bits</td>
<td></td>
</tr>
<tr>
<td>Noise Free where Sample Time < 100mS</td>
<td>62,000 / 16</td>
<td></td>
<td>Resolution/Bits</td>
<td></td>
</tr>
<tr>
<td>Noise Free where Sample Time > 1000mS</td>
<td>158,000 / 17</td>
<td></td>
<td>Resolution/Bits</td>
<td></td>
</tr>
</tbody>
</table>

Electrical

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply voltage</td>
<td>2.1</td>
<td>3.0</td>
<td>3.6</td>
<td>V DC</td>
</tr>
<tr>
<td>Power Supply ripple</td>
<td>50</td>
<td></td>
<td></td>
<td>mV AC pk-pk</td>
</tr>
</tbody>
</table>

Power Supply current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Mode (Non low power mode)</td>
<td>55</td>
<td>60</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Standby / Sleeping</td>
<td>5</td>
<td>20</td>
<td></td>
<td>uA</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>-40</td>
<td>+85</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40</td>
<td>+85</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>0</td>
<td>95</td>
<td></td>
<td>%RH</td>
</tr>
</tbody>
</table>

Physical

<table>
<thead>
<tr>
<th>Parameter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB Dimensions</td>
<td>16.8 x 37.5 x 6.5mm</td>
</tr>
</tbody>
</table>
Approvals

CE

Complies with EMC directive. 2004/108/EC
The Radio Equipment and Telecommunications Terminal Equipment (R&TTE) Directive, 1999/5/EC,

European Community, Switzerland, Norway, Iceland, and Liechtenstein

English: This equipment is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.

Deutsch: Dieses Gerät entspricht den grundlegenden Anforderungen und den weiteren entsprechenden Vorgaben der Richtlinie 1999/5/EU.

Dansk: Dette udstyr er i overensstemmelse med de væsentlige krav og andre relevante bestemmelser i Direktiv 1999/5/EF.

Español: Este equipo cumple con los requisitos esenciales así como con otras disposiciones de la Directive 1999/5/EC.

Français: Cet appareil est conforme aux exigences essentielles et aux autres dispositions pertinentes de la Directive 1999/5/EC.

Íslenska: Þessi búnaður samrýmist lögboðnum kröfum og öðrum ákvæðum tilskipunar 1999/5/ESB.

Italiano: Questo apparato è conforme ai requisiti essenziali ed agli altri principi sanciti dalla Direttiva 1999/5/EC.

Nederlands: Deze apparatuur voldoet aan de belangrijkste eisen en andere voorzieningen van richtlijn 1999/5/EC.

Norsk: Dette utstyret er i samsvar med de grunnleggende krav og andre relevante bestemmelser i EU-direktiv 1999/5/EC.

Português: Este equipamento satisfaz os requisitos essenciais e outras provisões da Directiva 1999/5/EC.

Suomalainen: Tämä laite täyttää direktiivin 1999/5/EY oleelliset vaatimukset ja on siinä asetettujen muidenkin ehtojen mukainen.

Svenska: Denna utrustning är i överensstämmelse med de väsentliga kraven och andra relevanta bestämmelser i Direktiv 1999/5/EC.

This equipment is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.

FCC

Family: RAD24
Models: i and e for internal and external antenna variants. For antenna T24-ANTA and T24-ANTB
FCC ID: VHARAD24

This device complies with Part 15c of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

CAUTION: If the device is changed or modified without permission from Mantracourt Electronics Ltd, the user may void his or her authority to operate the equipment.
Industry Canada

Models: i and e for internal and external antenna variants. For antenna T24-ANTA and T24-ANTB
IC:7224A-RAD24
This apparatus complies with RSS-210 - Low-power Licence-exempt Radiocommunication Devices (All Frequency
Bands): Category I Equipment RSS.

OEM / Reseller Marking and Documentation Requirements

FCC
The Original Equipment Manufacturer (OEM) must ensure that FCC labelling requirements are met. This includes a clearly visible label on the outside of the final product enclosure that displays the contents as shown:

Contains FCC ID:VHARAD24
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference and
(2) this device must accept any interference received, including interference that may cause undesired operation.

The acquisition modules have been tested with T24-ANTA and T24-ANTB. When integrated in OEM products,
fixed antennas require installation preventing end-users from replacing them with non-approved antennas.
Antennas other than T24-ANTA and T24-ANTB must be tested to comply with FCC Section 15.203 (unique
antenna connectors) and Section 15.247 (emissions).

Acquisition modules have been certified by the FCC for use with other products without any further
certification (as per FCC section 2.1091). Changes or modifications not expressly approved by Mantracourt
could void the user’s authority to operate the equipment.

In order to fulfil the certification requirements, the OEM must comply with FCC regulations:
1. The system integrator must ensure that the text on the external label provided with this device is placed on
the outside of the final product.
2. The acquisition modules with external antennas may be used only with Approved Antennas that have been
tested by mantracourt.

IC
Labelling requirements for Industry Canada are similar to those of the FCC. A clearly visible label on the
outside of the final product enclosure must display the following text:

Contains Model RAD24 Radio (2.4 GHz), IC:7224A-RAD24
Integrator is responsible for its product to comply with RSS-210 - Low-power Licence-exempt
Radiocommunication Devices (All Frequency Bands): Category I Equipment RSS.

CE
The T24 series has been certified for several European countries.
If the acquisition module is incorporated into a product, the manufacturer must ensure compliance of the final
product to the European harmonized EMC and low-voltage/safety standards. A Declaration of Conformity must
be issued for each of these standards and kept on file as described in Annex II of the R&TTE Directive.
Furthermore, the manufacturer must maintain a copy of the T24 device user manual documentation and ensure
the final product does not exceed the specified power ratings, antenna specifications, and/or installation
requirements as specified in the user manual. If any of these specifications are exceeded in the final product, a
submission must be made to a notified body for compliance testing to all required standards.

OEM Labelling Requirements
The ‘CE’ marking must be affixed to a visible location on the OEM product.
The CE mark shall consist of the initials “CE” taking the following form:

- If the CE marking is reduced or enlarged, the proportions given in the above graduated drawing must be respected.
- The CE marking must have a height of at least 5mm except where this is not possible on account of the nature of the apparatus.
- The CE marking must be affixed visibly, legibly, and indelibly.
Declaration Of Conformity

We, Mantracourt Electronics Limited
The Drive
Farringdon
Exeter
Devon EX5 2JB
declare under our sole responsibility that our products in the T24 Radio Telemetry Product Range to which this declaration relates are in conformity with the appropriate standard EN 300 328 following the provisions of the Radio and Telecommunications Terminal Equipment Directive 1999/5/EC, FCC CFR Title 47 part 15c BS EN 61000-4-2 and BS EN 61000-4-3 following the provisions of the EMC Directive 2004/108/EC and Low Voltage Directive 2006/95/EC.

December 2007

Brett James
Development Manager
Mantracourt Electronics Limited.
Worldwide Regional Approvals

<table>
<thead>
<tr>
<th>Region</th>
<th>Product Conforms To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>CE</td>
</tr>
<tr>
<td>USA</td>
<td>FCC</td>
</tr>
<tr>
<td>Canada</td>
<td>IC</td>
</tr>
<tr>
<td>Australia</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>China</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>Japan</td>
<td>To Be Determined</td>
</tr>
</tbody>
</table>

Important Note

Mantracourt does not list the entire set of standards that must be met for each country. Mantracourt customers assume full responsibility for learning and meeting the required guidelines for each country in their distribution market. For more information relating to European compliance of an OEM product incorporating the T24 range of modules, contact Mantracourt, or refer to the following web site: www.ero.dk

Warranty

All Telemetry products from Mantracourt Electronics Ltd., (‘Mantracourt’) are warranted against defective material and workmanship for a period of (1) one year from the date of dispatch.

If the ‘Mantracourt’ product you purchase appears to have a defect in material or workmanship or fails during normal use within the period, please contact your Distributor, who will assist you in resolving the problem. If it is necessary to return the product to ‘Mantracourt’ please include a note stating name, company, address, phone number and a detailed description of the problem. Also, please indicate if it is a warranty repair.

The sender is responsible for shipping charges, freight insurance and proper packaging to prevent breakage in transit.

‘Mantracourt’ warranty does not apply to defects resulting from action of the buyer such as mishandling, improper interfacing, operation outside of design limits, improper repair or unauthorised modification.

No other warranties are expressed or implied. ‘Mantracourt’ specifically disclaims any implied warranties of merchantability or fitness for a specific purpose. The remedies outlined above are the buyer’s only remedies. ‘Mantracourt’ will not be liable for direct, indirect, special, incidental or consequential damages whether based on the contract, tort or other legal theory.

Any corrective maintenance required after the warranty period should be performed by ‘Mantracourt’ approved personnel only.

In the interests of continued product development, Mantracourt Electronics Limited reserves the right to alter product specifications without prior notice.

Code No. 517-928

Issue 1.3

27.10.14
CONTATO

Endereço
Rua Sete de Setembro, 2656 - Centro
13560-181 - São Carlos - SP - Brasil

Telefone
+ 55 (16) 3371-0112
+ 55 (16) 3372-7800

Internet
www.metrolog.net
metrolog@metrolog.net